

इससे हिन्द	INDIAN SPACE RESEARCH ORGANISATION	Page 1 of 18

2	A signal source with 100m wavelen	igth is connecte	d to the input terminals of a 150m long
	transmission line terminated in its ch	naracteristic imp	pedance. The phase difference between the
	voltages at two ends of the transmiss		
į	a) 2π	b)	3 π
	c) 4 π	(d)	π
3	A charge $Q_2 = 8.854 \times 10^{-3}$ C at P (2.2.1) in (Viv	in a vacuum at	P_2 (2,3,1). The force on Q_2 due to a charge inates are measured in Meters. a_x , a_y and a_z
	are unit vectors in X , Y and Z direction		indies the measured in weters. u_x , u_y and u_z
	a) a _v N	b)	-a _y N
	c) $4a_x+5a_y+2a_z$ N	d)	-4a _x -5a _y -2a _z N
4	A low pass filter as shown in follow unity gain bandwidth of 1MHz. What		uilt using an operational amplifier having lth of this circuit?
			160pF
	100Ω	10K	
		+	
	a) 1 KHz	b)	10 KHz
	c) 100 KHz	d)	500 KHz
5	What is the frequency and duty cycle?	le of output Y, w	hen CLK frequency is 1MHz @ 50% duty
	CLK Q'	D Q .	
	a) 500 KHz @ 50% duty cycle	b)	500 KHz @ 25% duty cycle
	c) 250 KHz @ 50% duty cycle	4)	250 KHz @ 25% duty cycle

6		nn isotropic radiator, electric field inter be the electric field intensity at a distanc		distance R is measured as 3V/m. What		
	a)	1 V/m	b)	$\frac{1}{3}$ V/m		
	c)	$\frac{1}{9}$ V/m	d)	3V/m		
7	The l	ogic function implemented by following	4:1 MU2	X is		
-		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	<u>z</u>			
		X (MSB) Y (LSB)				
	a)	Z = X and Y	b)	Z = X or Y		
	<u>c)</u>	Z = X xor Y	d)	$Z = X \times Y$		
8	Characteristic impedance of a two-wire transmission line at 10KHz is 200-j50 ohms. Line					
	terminated in its characteristic impedance, and a 28.28V p-p signal is measured at its Determine the real power supplied by the signal source to the line?					
-	a)	0.5 W	b)	0.485W		
	c)	0.47 W	d)	0.25 W		
9		ch is the correct waveform across capaci		<u></u>		
	The same of the sa					
		5 Vrms 50 Hz		10nF 1K		
	a)		b)			
	c)		d)			

इसरो डिल्ट	INDIAN SPACE RESEARCH ORGANISATION	Page 3 of 18

10	Input voltage applied to a circuit is 1V rms and the output is 1mV rms. Net gain of the circuit is:						
	a)	+ 30dB	b)	- 30dB			
	c)	- 60dB	d)	+ 60dB			
11							
	.a). ·	16	b).	256 -			
	c) .	64	d)	128			
12	The d	ivergence of magnetic field intensity is					
	a)	Electric charge density	b)	Electric field intensity			
	c)	Zero	d)	Conduction current density			
13	A UART is configured to transmit 8 bit data, 1 start bit and 1 stop bit. The serial data output is observed on oscilloscope, which looks like a square wave with frequency of 9600 Hz. What is the baud rate and transmitted data?						
	a)	Baud rate = 9600, Data = 55h	b)	Baud rate = 19200, Data = 55h			
	c)	Baud rate = 19200, Data = FFh	d)	Baud rate = 9600, Data = AAh			
14	A transmission line having characteristic impedance of 50ohms has to deliver 10KW power at 100KHz to a load. Maximum permissible value of rms current anywhere along the line is 20A. What is the maximum VSWR that can be tolerated on this line?						
	a)	2	_b)	1			
	c)	3	d)	2.5			
15							
	a)	Relative stability of the system	b)	Time response of the system			
	c)	Absolute stability of the system	d)	Roots of the characteristic equation graphically			
16	signal of memory interfaced to 8 bit microprocessor with 16 bit address bus. What is address range and size of memory? A15 A14 A13 A12						
<u></u>	a) D000h to EFFFh, size= 8K Bytes b) D000h to DFFFh, size= 4K Bytes						
	(c)	C000h to FFFFh, size= 16K Bytes	(d)	E000h to EFFFh, size = 4K Bytes			

4
1
इसरी डिन्ट

17	The managaide cross section of a square waveguine with Trill propagation mode is						
	gradually deformed into a circle, then the corresponding circular waveguide mode will be:						
	a) TE11 b) TE10 c) TE21 d) TE12						
-18	C)	<u> </u>	d)	TE12			
.19	wna	t could be the output current rating of fo	ollowing	shunt regulator?			
		50Ω					
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
	,	는 0.4W <u>는</u>		e real since mention com			
	a)	$0 < I_L < 100 \text{mA}$	b)	$20 \text{mA} < I_L < 100 \text{mA}$			
	c)	$0 < I_L < 50 \text{mA}$	d)	$10\text{mA} < I_L < 100\text{mA}$			
	Ant	M CW (Exagueror Madulated Co.					
19	AH I	M-CW (Frequency Modulated – Contin	uous Wa	ve) Radar is essentially			
	a)	Bistatic	b)	Monostatic			
	c)	Can operate either as monostatic or as bistatic	d)	None of the above			
20	The flux in a magnetic core is sinusoidally varying at 200 Hz. The maximum flux density is 2 Tesla and eddy current loss is 15 W. If the frequency is raised to 400 Hz and maximum flux density reduced to 1 Tesla, the eddy current loss will						
	a)	Reduce to half	b)	Get doubled :			
	c) Reduce to one-fourth d) Remain same						
21	The electric field intensity E and magnetic field intensity H are coupled and propagating in free space in x and y direction respectively, the Poynting vector is given by						
	a) $EH\hat{x}$ b) $EH\hat{y}$						
	c)	EHxŷ .	d)	None of the above			
22							
	a)	Zero mean Gaussian distributed	b)	Uniform between $-\pi$ and π			
	c)	Uniform between $-\pi/2$ and $\pi/2$	d)	Non-zero mean Gaussian distributed			
23	The c	current flowing through a capacitor in a	n AC circ				
	a)	Non-existent	b)	Conduction current			
	c)	Displacement current	d)	None of the above			

1	
इसरो isra	

a) Y = AB + AC + CB c) Y = ABC d) Y = AB + BC 25 For broadside antenna array, the largest possible spacing between the antenna elements without any grating lobes is a) 1/2 c) 2 \(\) d) None of the above 26 For the 8085 assembly language program given below, the content of the accumulator after execution of the program is 3000 MVI A, 45H 3002 MOV B, A 3003 STC 3004 CMC 3005 RAR 3006 XRA B a) 00H b) 45H c) 67H d) E7H 27 Conduction angle of a Class AB amplifier is: a) <180° b) Between 180° and 360° c) 360° d) 90° 28 For non dispersive medium a) Phase velocity > Group velocity c) Phase velocity = Group velocity d) None of the above 29 Schottky clamping is resorted in TTL gates a) to reduce propagation delay b) to increase noise margins c) to increase packing density d) At cut-off frequency, the phase velocity of a waveguide is	!	Which of the following is the Boolean function for Majority Voting, assuming A,B,C are inputs and Y is output?						
Solution Find Find For broadside antenna array, the largest possible spacing between the antenna elements without any grating lobes is Solution		14)						
without any grating lobes is a) \(\frac{1}{2} \) \\ b) \\ \text{None of the above} \) 26 For the 8085 assembly language program given below, the content of the accumulator after execution of the program is 3000 MVI A, 45H 3002 MOV B, A 3003 STC 3004 CMC 3005 RAR 3006 XRA B a) \(00H \) \(b) \) \(45H \) \(c) \) \(67H \) \(d) \\ E7H \) 27 Conduction angle of a Class AB amplifier is: a) \(<180^{\circ} \) \(\frac{1}{3}60^{\circ} \)		c)	Y= ABC	d)	Y = AB + BC			
c) 2 \(\) d) None of the above 26 For the 8085 assembly language program given below, the content of the accumulator after execution of the program is 3000 MVI A, 45H 3002 MOV B, A 3003 STC 3004 CMC 3005 RAR 3006 XRA B a) 00H b) 45H c) 67H d) E7H 27 Conduction angle of a Class AB amplifier is: a) <180° b) Between 180° and 360° c) 360° d) 90° 28 For non dispersive medium a) Phase velocity > Group velocity b) Phase velocity < Group velocity c) Phase velocity = Group velocity d) None of the above 29 Schottky clamping is resorted in TTL gates a) to reduce propagation delay b) to increase noise margins c) to increase packing density d) to increase fan-out	į	For broadside antenna array, the largest possible spacing between the antenna elements						
For the 8085 assembly language program given below, the content of the accumulator after execution of the program is 3000 MVI A, 45H 3002 MOV B, A 3003 STC 3004 CMC 3005 RAR 3006 XRA B a) 00H		S 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2						
execution of the program is 3000 MVI A, 45H 3002 MOV B, A 3003 STC 3004 CMC 3005 RAR 3006 XRA B a) 00H		c)						
a) 00H b) 45H c) 67H d) E7H 27 Conduction angle of a Class AB amplifier is: a) <180° b) Between 180° and 360° c) 360° d) 90° 28 For non dispersive medium a) Phase velocity > Group velocity b) Phase velocity < Group velocity c) Phase velocity = Group velocity d) None of the above 29 Schottky clamping is resorted in TTL gates a) to reduce propagation delay b) to increase noise margins c) to increase packing density d) to increase fan-out	26	execution of the program is 3000 MVI A, 45H 3002 MOV B, A 3003 STC 3004 CMC 3005 RAR						
Conduction angle of a Class AB amplifier is: a) <180° b) Between 180° and 360° c) 360° d) 90° 28 For non dispersive medium a) Phase velocity > Group velocity b) Phase velocity < Group velocity c) Phase velocity = Group velocity d) None of the above 29 Schottky clamping is resorted in TTL gates a) to reduce propagation delay b) to increase noise margins c) to increase packing density d) to increase fan-out				b)	45H			
a) <180° b) Between 180° and 360° c) 360° d) 90° 28 For non dispersive medium a) Phase velocity > Group velocity b) Phase velocity < Group velocity c) Phase velocity = Group velocity d) None of the above 29 Schottky clamping is resorted in TTL gates a) to reduce propagation delay b) to increase noise margins c) to increase packing density d) to increase fan-out		·			E7H			
c) 360° d) 90° 28 For non dispersive medium a) Phase velocity > Group velocity b) Phase velocity < Group velocity c) Phase velocity = Group velocity d) None of the above Schottky clamping is resorted in TTL gates a) to reduce propagation delay b) to increase noise margins c) to increase packing density d) to increase fan-out	27	Conduction angle of a Class AB amplifier is:						
c) 360° 28 For non dispersive medium a) Phase velocity > Group velocity c) Phase velocity = Group velocity d) None of the above 29 Schottky clamping is resorted in TTL gates a) to reduce propagation delay b) to increase noise margins c) to increase packing density d) to increase fan-out		a)	<180°	b)	Between 180° and 360°			
a) Phase velocity > Group velocity b) Phase velocity < Group velocity c) Phase velocity = Group velocity d) None of the above Schottky clamping is resorted in TTL gates a) to reduce propagation delay b) to increase noise margins c) to increase packing density d) to increase fan-out			360°	d)	90°			
c) Phase velocity = Group velocity d) None of the above Schottky clamping is resorted in TTL gates a) to reduce propagation delay b) to increase noise margins c) to increase packing density d) to increase fan-out	28	For non dispersive medium						
c) Phase velocity = Group velocity d) None of the above Schottky clamping is resorted in TTL gates a) to reduce propagation delay b) to increase noise margins c) to increase packing density d) to increase fan-out		a)	Phase velocity > Group velocity	b)	Phase velocity < Group velocity			
29 Schottky clamping is resorted in TTL gates a) to reduce propagation delay b) to increase noise margins c) to increase packing density d) to increase fan-out			· · · · · · · · · · · · · · · · · · ·	d)	None of the above			
c) to increase packing density d) to increase fan-out	29							
o) to more partially		a)	to reduce propagation delay	b)				
30 At cut-off frequency, the phase velocity of a waveguide is		c)	to increase packing density	d)	to increase fan-out			
	30							
a) Zero b) Infinite		a)	Zero	b)				
c) Finite d) None of the above		c)		d)	None of the above			
A Zener diode, when used in voltage stabilization circuits, is biased in	31	A Z	ener diode, when used in voltage stabiliz	ation cir	cuits, is biased in			
a) reverse bias region below the breakdown voltage b) reverse breakdown region		a)	_	ļ ·				
c) forward bias region d) forward bias constant current mode		c)	forward bias region	d)	forward bias constant current mode			

 INDIAN SPACE RESEARCH ORGANISATION	Page 6 of 18

32	The	closed	loop	frequency response of a dc-d	c conver	ter is shown in following figure. What are
	the g	gain an	id ph	ase margins?	• •	
			30	-		· 180 .
				Gain		
			20		=:::\	120
				\ \'	•	` Phase
			10	·, ×		60
		≅	10			• • • • • • • • • • • • • • • • • • • •
		(dE	_			J P
		Gain (dB)	0		/-/-	Phase (Degree)
		G				\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
			-10		<u>-</u>	
						Ä Ä
			-20			-120
			-30			-180
			.00			-100
				I		\ 1
		2040	000			100 ID 000
	a)	20dB			b)	26dB, 80°
22	c)	20dB	, 120		<u>d)</u>	26dB, 120°
33	If fo	r a sili	con n	pn transistor, the base-to-emi	itter volt	age (VBE) is 0.7V and the collector-to-
	base	voltag	ge (Vo	(\widehat{CB}) is 0.2 V, then the transistor	or is one	rating in the
				ve mode		
	a)			12000	b)	saturation mode
24	c)			ve mode · ·	d) ·	cutoff mode
34		ort Circulator is				
	a)	Reciprocal, matched			b)	Non reciprocal, unmatched
	c)	Non reciprocal, matched d) Reciprocal, unmatched				
35	An 8	An 8 bit ripple counter and an 8 bit synchronous counter are made using flip flops having a				
<i>i</i> [prop	opagation delay of 10 ns each. If the worst case delay in the ripple counter and the				
	sync	hronoi	us coi	unter be R and S respectively,	, then	· .
	a)			S = 80 ns	b)	R = 40 ns, S = 10 ns
	c)	R = 1	0 ns S	S = 10 ns	d)	R = 80 ns, S = 10 ns
`36	Gair	of an	RC I	ow pass filter having a time c	onstant '	'τ' and frequency 'ω' is:
	a)	$\sqrt{1+}$	(ωτ)	2	b)	$1/\sqrt{1+(\omega\tau)^2}$
	c)	$\omega \tau / $	1+($(\omega \tau)^2$	d)	$\omega \tau / \sqrt{1 - (\omega \tau)^2}$

<u>-</u> ,-	The state of the s				
37	For a directional coupler, the quantities I (isolation in dB), D (directivity in dB), C (coupling in				
	dB) are related by a) I=C/D	b)	I = D - C		
	a) I=C/D c) I = D + C	d)	I= D/C		
38	The two numbers represented in signed 2				
30	11100110. If Q is subtracted from P , the v	alue obtain	ed in signed 2's complement is		
		b)	00000111		
	a) 1000001111 c) 11111001	d)	111111001		
39					
	Depletion type MOSFET operates in :				
	a) Depletion Model only	b)	Enhancement Mode only		
	c) Both depletion and enhancement mode	e d)	None of the above		
40	Electric Field and Magnetic Field are per	pendicular	to each other in :		
	a) Klystron	b)	Magnetron		
	c) TWTA	d)	All of the above		
41			onents as shown below. What is the output		
41		crete comp	onents as shown below. What is the output		
	voltage?				
	10V 2.5V	4mA	1K 2K		
	a) 9.3 V	b)	7.5 V		
	c) 0 V	d)	2.5 V		
42					
	a) Increased by a factor of 2	b)	Increased by a factor of 4		
	c) Decreased by a factor of 4	d)	Increased by a factor of 16		
43	The electric field measured in the far fiel	ld of an ant			
	average power densities at a distance of	500m from	the antenna is		
-		b)	$0.1\mu \text{W/m}^2$		
-	a) 26.6μW/m²	<u>q)</u>	13.3µW/m ²		

44	Ifac	counter having 10 Flip Flops is initially	at 0, wha	t count will it hold after 2060 pulses?
	a) ·	000 000 1100	b)	000 001 1100
	c)	000 001 1000	d)	000 000 1110
45	For	a frequency modulated signal repre	sented by	$s(t)=10\sin(6 \times 10^8 t + 2\sin(100\pi t))$. The
	maxi	mum frequency deviation in the carrie	r from its	unmodulated frequency is:
ļ	a)	990Hz	b)	100Hz
<u> </u>	c)	50Hz	d)	200Hz
46	For v	which of the following conditions, the	circuit sh	own below will function as precision full
	wave	rectifier?		
-		Vin N	F	R3 Vo
	a)	R1 = R2 = R	b)	R1 = R3 = R
	c)	R2 = 2R1	d)	R1 = R2 = R3
47	Inaı	monostatic radar, if the antenna apertu	re is doub	
	a)	Reduce by a factor of 2	b)	Increase by a factor of 2
	c)	Reduce by a factor of $\sqrt{2}$	d)	Increase by a factor of $\sqrt{2}$
48	The c	lisadvantage of single stub matching is	that	1
	a)	Every load needs a new stub position	b)	Only shunt stub should be used
	c)	Only resistive load can be matched	d)	Useful only in two wire transmission line
49	A cer	tain antenna with an efficiency of 95%		imum radiation intensity of 0.5 W/sr. The
	direc	tivity of the antenna fed by input powe	r of 0.4 W	7
1	a)	16.53	b)	12.2
	c) .	10.36	d)	11.31
50	A me	mory system of size 16 K bytes is requ	1 /	designed using memory chips which have
	12 ac	ddress lines and 4 data lines each. The	hen numb	per of such chips required to design the
	mem	ory system is		and the control of the control of the
	a)	2	b)	4
	C)	8	-1)	16

In the asymptotic bode plot of a transfer function of a closed loop system shown below, the number of poles and zeros are,

i	 	· · · · · · · · · · · · · · · · · · ·		
	a)	3 pole, 2 zero	b)	2 pole, 2 zero
	c)	2 pole, 1 zero	d)	3 pole, 1 zero

Plane Wave travelling in free space has an average Poynting vector of 3W/m². Average energy density (nJ/m³) of the wave is:

 a)
 10

 b)
 5

 c)
 1

 d)
 3

For two identical n-channel JFET's connected in parallel as shown in fig. below, the pinch-off voltage of equivalent JFET is:

	a)	Doubled '	b)	Becomes half				
	c)	Remains same	d)	None of the above				
54		for which L=0.4 μH/m and C=40 pF		/s travels down a loss-less transmission				
	a)	$2.36 \times 10^8 \text{ m/s}$	b)	$2.5 \times 10^8 \text{m/s}$				
	c)	5 x10 ⁹ m/s	d)	4.5x10° m/s				
55	The	Maxwell's equation $ abla imes \overline{E} = -rac{1}{2}$	$\frac{\partial \overline{B}}{\partial t}$ is obtain	ned from :				
	a)	Ampere's Law	b)	Faraday's Law				
	c)	Lenz's Law	d)	Both b and c				
56		ssless line having characteristic imp VSWR of the line will be:	edance Zo	is terminated with a load impedance of				
	a)	1	b)	10				
	c)	Infinite	d) ·	None of the above				
57		gnal $1 + \cos(2\pi ft) + \cos(6\pi ft)$ where nsform is carried out. How many lin						
	a)	5	b)	1				
	c)	3	d)	2				
58	The	The array factor of an array antenna depends on						
	a)	Number of radiating elements	b)	Spacing between the elements				
	.c)	Phase of the applied signal	d)	All of the above				
59	Whi	ich of the following parameter is im	proved by i	ntroducing pipelining in digital design?				
	a)	Area (Gate count)	b)	Maximum clock frequency				
,	c)	Power dissipation	d)	. Noise				
60	A tr load	ansmission line having characteristi impedance 'Z _L ' appears in a Smith	c impedan Chart on:	ce 'Z _t ' of varying length in series with a				
	a)	Constant Resistance Circle	b)	Constant VSWR Circle				
	c)	Constant Reactance Circle	d)	All of the above				
61	Imp	edance characteristics on a Smith (Chart repea	at after a distance of:				
	a)	λ	b)	λ/4				
	c)	λ/2.	d)	None of the above				

62	If τ is the time constant and ω is the applied frequency, a low pass RC filter acts as a pure						
	integr	ator when:					
	a)	ωτ=0	b)	ωτ>> 1			
	c)	$\omega \tau = 1$	d)	ωτ<< 1			
63	10μF	capacitor is connected across secon	dary windi	ng of a high frequency transformer			
		- -	:2. What is	the value of capacitance seen across			
	prima						
	a)	4μF	b)	62.5μF			
	c)	25μF	d) .	1.6μF			
64	What	will be the output of the following ci	rcuit, if poi	nt-P is stuck at 1?			
Ì	. A —	$\overline{}$					
	В —						
1	c—	P //					
)						
	a)	A+B+C	b)	A'B'C'			
	c)	(ABC)'	d)	0			
65.	For t	ne current mirror circuit shown belo	w, if the em	itter area of Q2 is thrice of Q1, the			
	curre	nt I is: $V_C = +10V$					
		•					
		R = \$		•			
		$20 \mathrm{K}\Omega$		↓ 1			
		Qı		Q 2			
		· .					
				•			
		'					
			$V_E = -10V$				
ļ		0.000	I	10.055			
	a)	0.328mA	b)	2.955mA			
	c)	0.105mA	d)	0.012mA			
66		ut of an Op-amp is 1V peak, and slev		/μs. The maximum frequency of			
<u> </u>	 	sinusoidal signal that can be reprod	1	70/11			
	a)	398Hz	b)	796Hz			
	(c)	796KHz	d)	398KHz			

इसरो डिन्ट	INDIAN SPACE RESEARCH ORGANISATION	Page 12 of 18

70	Given the output for the foll	owing no	on-inverting	summing	amplifier,	the rel	ation	between
	R _f and R in the circuit is:							

Ь,						
	a)	$R_i = R$	b)	$R_f=4R$		
	c)	$R_f=2R$	d)	$R_f = R/2$		

A pulse signal having 100 kHz frequency and 70 nsec rise time is to be measured on an oscilloscope. The minimum required bandwidth of the oscilloscope is,

a)	500 kHz	b)	14.3 MHz
c)	5 MHz	d)	200 kHz

72 Multiple collectors are used in Traveling Wave Tube (TWT) to:

	aj)	To distribute the dissipated heat evenly	b)	To increase the overall efficiency
•	c)	To increase the gain of the TWT	d)	To shape the electron beam

A lossless antenna has directional gain $G(\theta, \varphi)$, then $\int_{\varphi=-\pi/2}^{\varphi=\pi/2} \int_{\theta=-\pi/2}^{\theta=\pi/2} G(\theta, \varphi) d\theta d\varphi$ is:

			1			
	a)	4π	b)	2π		
-	c)	$\leq 4\pi$	d)	$\leq 2\pi$		
74	$\sqrt[3]{Cosx - jSinx}$ is equal to					
	a)	$(\cos x)^{1/3} - j(\sin x)^{1/3}$	b)	$\sqrt[3]{\cos^2 x - j\sin^2 x}$		
	c) -	$\cos\frac{x}{3} - j\sin\frac{x}{3}$	d)	$\sin\frac{x}{3} - j\cos\frac{x}{3}$		
75	If f	(t) is 1 MHz sinusoid with 1 Vp-p	and samplin	g frequency fs is 25KHz, the output		
	will					
			8bi	→ Output		
	fs , Sampling Frequency					
	a)	0V	b)	DC value anywhere between -1V and +1V		
	c)	DC value anywhere between - 0.5V and +0.5V	d)	1Vp-p 1MHz sinusoid		

इसरी डिन्ट	INDIAN SPACE RESEARCH ORGANISATION	Page 16 of 18

77 ·		A 10dB attenuator is put at the input of a low noise amplifier having 3dB noise figure.				
	1	the noise figure of the cascaded an				
	a)	3dB	b)	12dB		
	c)	7dB	j d)	None of the above		
78	A 33	3.33% duty cycle rectangular way	re is fed to the	he input of an Spectrum Analyzer.		
	wna	t will be observed?				
	a)	2 nd , 5 th , 8 th harmonics missing	b)	3 rd , 6 th , 9 th harmonics missing		
	c)	1 st , 4 th , 7 th harmonics missing	d)	All the harmonic present		
79	Phas	e function of a filter is $(f) = kf^2, k$	> 0 . The gro	oup delay of the filter has the shape		
·						
	a)	Gro	oup Delay	· · ·		
ì	b)		Group Delay —— f —	••••••••••••••••••••••••••••••••••••••		
3 -	c)		Group D	elay -f		

		, Group Delay
	d)	
	-	f
80	1V p-p sinusoid is digitized by a 4 bit A-to-D converter with input dynamic range of 2V p-p. The signal to noise ratio of the digitized signal is:	
	a)	384
	b)	96
	c)	48
	d)	24

End of questions